

Reliability Assessment of VCSEL Devices for 5 Gbit/s Data Transmission in Automotive Environments

Interconnectivity, Tokyo, November 14th, 2013

Jörg Angstenberger

Head of Technology Assessment

- 1. Introduction
- 2. Automotive Robustness Requirements
- 3. Automotive Environment Requirements
- 4. Reliability Assessment
- 5. Summary

Introduction

Reliability Assessment of VCSEL Transmitters

- VCSEL transmitters are able to provide Data Rates >5 Gbit/s and could be an option for further optical Physical Layer Data Links
- VCSEL devices are well established in DataCom Applications but so far have not been introduced to Automotive Applications
- VCSEL devices show good performance reliability in DataCom Application
 Environments

→ Reliability Assessment of VCSEL devices to determine whether the demanding reliability requirements for automotive can be achieved

- 1. Introduction
- 2. Automotive Robustness Requirements
- 3. Automotive Environment Requirements
- 4. Reliability Assessment
- 5. Summary

Automotive Robustness Requirements SYSTEM SOLUTIONS

Required Lifetime and Reliability for Automotive

Failure rate of a semiconductor

- depends on lifetime and the relation to a defined car mission profile
- has to be below the max. accepted failure rate over the defined car lifetime

Automotive Robustness Requirements SYSTEM SOLUTIONS

Mission Profile of the Automotive Application

The mission profile is principally defined by the required lifetime of the device in a specific compartment area of the vehicle.

In terms of motor vehicles from main German manufacturers, this information can be found in the LV124¹ specification

Required Life Time:

Criteria	Requirement
Service Life	15 years
Operating Hours	8000 h
Milage	300.000 km

Required Failure Rate during Lifetime:

For automotive semiconductor devices, random failure rates in the magnitude of ~10FIT with a confidence level of 90% are assumed and accepted. (≙5ppm/yr @500 operating hours/yr)

¹ LV124 Electric and Electronic Components in Motor Vehicles up to 3.5t - General Component Requirements, Test Conditions and Tests.

RUETZ SYSTEM SOLUTIONS

Automotive Robustness Requirements SYSTEM SOLUTIONS

AEC-Q100 exclusively is not sufficient for today's semiconductors

- Today, single-digit failure rates (ppm/yr) are expected (0ppm goal)
- With AEC-Q100 there is a significant coverage gap
- No transparency of robustness margin
- AEC-Q100 exclusively is not sufficient for today's semiconductors

Automotive Robustness Requirements SYSTEM SOLUTIONS

Unified Method for comprehensive Robustness Assessment

- Robustness Validation Method to cover wear-out failure mechanisms
- High Volume/Generic Test Data to cover random failures
- Integrated Method based on Physics of Failures and today's experiences for a comprehensive Robustness Assessment

- 1. Introduction
- 2. Automotive Robustness Requirements
- 3. Automotive Environment Requirements
- 4. Reliability Assessment
- 5. Summary

RUETZ SYSTEM SOLUTIONS

Automotive Environment Requirements SYSTEM SOLUTIONS

Temperature Conditions in Automotive Applications

For MOST applications, only installation locations 1 and 2 have to be taken into account.

Installation location of the component	Temperature Profile No.
Interior, without special requirement	1
Body-mounted part, without special requirements	1
Interior exposed to sun radiation	2
Body-mounted part, roof	2
Engine compartment, but not on the engine	3
On the radiator	3
Engine-mounted parts	4
Gearbox-mounted parts	4

Temperature Profile 1	Temperature Profile 2	Percentage	Operating Hours
-40 °C	-40 °C	6 %	480h
23 °C	23 °C	20%	1600h
40 °C	50 °C	65%	5200h
75 °C	100 °C	8%	640h
80 °C	105 °C	1%	80h
Operating Hours complete	e:		8000h

Worst Case Temperature Profile

RUETZ

Automotive Environment Requirements **SYSTEM SOLUTIONS**

Temperature Model

- Introduction
- 2. Automotive Robustness Requirements
- 3. Automotive Environment Requirements
- Reliability Assessment
- 5. Summary

12

Reliability Assessment

Test Temperature to Cover All Possible Failure Mechanisms

Minimum Test Temperature (T_{JTestmin})

Minimum test temperature (Junction) of the VCSEL has to be at least the maximum possible temperature under application conditions

Maximum Test Temperature (T_{JTestmax}**)**

The maximum test temperature is limited by maximum power dissipation of the VCSEL and has to be estimated by the manufacturer.

Lifetime Test

Thermal Model of a VCSEL

Example of a thermal model of a virtual VCSEL-device:

Substrate Temperatur	Operating Current I [mA]									
T _s [°C]	3	4	5	6	7	8	9	10	11	12
70	81	84	88	91	95	98	102	106	109	113
85	96	99	103	106	110	113	117	121	124	128
90	101	104	108	111	115	118	122	126	129	133
100	111	114	118	121	125	128	132	136	139	143
105	116	119	123	126	130	133	137	141	144	148
110	121	124	128	131	135	138	142	146	149	153
120	131	134	138	141	145	148	152	156	159	163
130	141	144	148	151	155	158	162	166	169	173

The thermal model of a VCSEL describes the correlation between substrate temperature, operating current, and junction temperature.

Lifetime Test SYSTEM

Lifetime Test

In this Reliability Assessment, there are two basic intentions for lifetime testing:

- 1. Robustness Validation: Determination of the point in time when the wear-out phase of the device begins
- 2. Volume Test: Prediction of the expected random failure rate of the device during the specified car lifetime

2 different test setups for Wear-Out and Random Failure Rate

Robustness Validation for Wear-Out

- HTOL test with high acceleration factor²
- Limited number of samples
- Generation of a significant number of failures (e.g. 50%) in a limited time frame

$$A_f = \left(\frac{I_1}{I_2}\right)^N \cdot e^{-\frac{E_A}{k}\left(\frac{1}{273,15^{\circ}C + T_1} - \frac{1}{273,15^{\circ}C + T_2}\right)}$$

E_A Activation Energy (2typical value for wear-out 0.7V or empirical determined)

k Boltzmann Constant

A_f Acceleration Factor

I₁ Current at Test

I₂ Operating Current

 T_1 Test Temperature (Junction Temperature T_J)

 T_2 Temperature at operating condition (Junction Temperature T_J)

N Current acceleration exponent (2typical value N=2)

^{2.} GR-468-CORE Issue 2. Generic Reliability Assurance Requirements for Optoelectronic Devices s.l.: Telcordia Technologies, September 2004.

Lifetime Test

Volume Test for Random Failure Rate

- HTOL test with moderate acceleration factor²
- High number of samples to prove a failure rate of ~10FIT with a CL of 90%
- Conservative (low) activation energy according to GR-468-CORE to cover all possible failure mechanisms

$$A_f = e^{-\frac{E_A}{k} \left(\frac{1}{273,15^{\circ}C + T_1} - \frac{1}{273,15^{\circ}C + T_2} \right)}$$

E_A Activation Energy (2typical value for random failure 0.35eV)

k Boltzmann Constant

A_f Acceleration Factor

T₁ Test Temperature (Junction Temperature T_J)

 T_2 Temperature at operating condition (Junction Temperature T_J)

^{2.} GR-468-CORE Issue 2. Generic Reliability Assurance Requirements for Optoelectronic Devices s.l.: Telcordia Technologies, September 2004

Reliability Assessment

Random Failure Rate Calculation

Calculation of the corresponding device hours under application conditions based on the collected device hours from test

$$D(T_{JApp}) = nt \cdot e^{-\frac{E_A}{k} \left(\frac{1}{273,15^{\circ}C + T_{JTest}} - \frac{1}{273,15^{\circ}C + T_{JApp}} \right)}$$

D(T_{JApp}) Device hours at Application Condition

n Number of tested devices

t Number of test hours at test condition T_{JTest}

T_{JTest} Temperature Test Condition (Junction Temperature)

T_{JApp} Temperature Application Condition (Junction Temperature)

E_A Activation Energyk Boltzmann Constant

Calculation of the approved random failure rate under application conditions based on the corresponding device hours

$$\lambda(T_{JApp}) \le \frac{\chi^2(CL, 2r+2)}{2D(T_{JApp})}$$

 $\lambda(T_{JApp})$ approved random failure rate for corresponding application condition

 T_{JApp} Junction Temperature (Application condition) $D(T_{JApp})$ Tested Device hours at application condition T_{JApp}

CL Confidence Level (e.g. 90%)

r Number of Failures $\chi^2(CL,2r+2)$ Bound of χ^2 distribution

Reliability Assessment

Calculation Example for Random Failure Rate (virtual VCSEL)

Example: Virtual VCSEL						
Operating Current I [mA]	3	4	5	6	7	8
T _{cmax} [°C]	110	110	110	110	110	110
ΔΤ _{SC} [k]	0	0	0	0	0	0
ΔT _{JS} [K]	11	14	18	21	25	28
T _{lmin} [°C]	-24	-21	-17	-14	-10	-7
T _{Jmean} [°C]	66	69	73	76	80	83
T _{Imax} [°C]	121	124	128	131	135	138
Test Data T _{ITest} =140°C (5000h x 3000)	used	used	used	used	used	used
Test Data T _{ITest} =124°C (6000h x 2500)	used	used				
Test Data T _{ITest} = 100°C (6000h x 500)						
FIT (CL 90%) calulated for T _{imean}	<11	<12	<23	<25	<29	<32
FIT (CL 90%) calculated for temperature profile	<12	<14	<26	<28	<32	<35

Random Failure Rate calculated for the mean temperature T_{jmean} of the distribution: <12FIT(CL90%, T_{jmean} =69°C)

Random Failure Rate calculated for the complete temperature profile of the distribution: $<14FIT(CL90\%, T_{iprofile}=[-24^{\circ}C,69^{\circ}C,124^{\circ}C])$

- 1. Introduction
- 2. Automotive Robustness Requirements
- 3. Automotive Environment Requirements
- 4. Reliability Assessment
- 5. Summary

Summary

Reliability Assessment Method

- Automotive Robustness Requirements have been discussed
- AEC-Q100 exclusively is not sufficient to prove automotive suitability of todays semiconductors
- A temperature profile was calculated that considers the thermal worst case scenario for the VCSEL transmitter device
- Two different test setups were introduced to evaluate the wear-out behavior and the random failure rate of the VCSEL device
- A calculation method according to established reliability methods was introduced to predict the random failure rate

Summary

Status of Lifetime Test from VCSEL Manufacturer

- A reliability study based on the introduced evaluation method was started in 2012 on 3 VCSEL devices from different manufacturers
- The selected devices fulfill the basic functional requirements of a potential further optical MOST Physical Layer
- Test results show that the requirement of more the 8000h lifetime can be achieved without running into wear-out
- Test results demonstrate that a random failure rate of around 10FIT is realistic and feasible

Thank you for your attention!

Jörg Angstenberger

RUETZ SYSTEM SOLUTIONS

Walter-Gropius-Straße 17 80807 München Germany

T +49 / 89 / 200 04 13-0 F +49 / 89 / 200 04 13-99 info@ruetz-system-solutions.com